Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
Anal Chim Acta ; 1302: 342473, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580402

RESUMO

In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Vesículas Extracelulares/química , Biópsia Líquida/métodos , Biomarcadores/análise , Ácidos Nucleicos/análise , Morte Celular
2.
Clin Nutr ESPEN ; 60: 333-342, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479932

RESUMO

BACKGROUND: Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS: The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS: Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS: Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.


Assuntos
Vesículas Extracelulares , Proteômica , Masculino , Feminino , Humanos , Adolescente , Criança , Proteômica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografia Líquida , Proteínas/metabolismo , Espectrometria de Massas
3.
Sci Rep ; 14(1): 6791, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514697

RESUMO

Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of 92.2 % and selectivity of 92.3 % over 769 measurements from two labs that have different measurement configurations.


Assuntos
Vesículas Extracelulares , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Vesículas Extracelulares/química , Neoplasias da Próstata/diagnóstico , Lipoproteínas , Aprendizado de Máquina Supervisionado , Análise Espectral Raman/métodos
4.
STAR Protoc ; 5(1): 102892, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363686

RESUMO

Extracellular vesicles (EVs) are complex structures that transport various DNA, RNA, and protein. Recently, new EV secretion mechanisms have been identified through the iron regulatory system in mammalian cells. We revealed that ferroptosis increases EV secretion, which is named ferroptosis-dependent EVs (FedEVs). Here, we describe a step-by-step procedure to isolate GFP-expressing FedEVs for in vitro analysis. The FedEVs are further analyzed by imaging and flow cytometry analysis. For complete details on the use and execution of this protocol, please refer to Ito et al.1.


Assuntos
Vesículas Extracelulares , Ferroptose , Animais , Ferroptose/genética , Proteínas/metabolismo , Técnicas de Cultura de Células , Vesículas Extracelulares/química , Mamíferos
5.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38335261

RESUMO

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Assuntos
Astenozoospermia , Canais de Cálcio , Vesículas Extracelulares , Sêmen , Motilidade dos Espermatozoides , Humanos , Masculino , Astenozoospermia/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Peptídeos/metabolismo , Peptídeos/farmacologia , Sêmen/química , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
6.
Anal Chem ; 96(8): 3508-3516, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364051

RESUMO

Extracellular vesicles (EVs) are cell-derived particles that exhibit diverse sizes, molecular contents, and clinical implications for various diseases depending on their specific subpopulations. However, fractionation of EV subpopulations with high resolution, efficiency, purity, and yield remains an elusive goal due to their diminutive sizes. In this study, we introduce a novel strategy that effectively separates EV subpopulations in a gel-free and label-free manner, using two-dimensional (2D) electrophoresis in a microfluidic artificial sieve. The microfabricated artificial sieve consists of periodically arranged micro-slit-well structures in a 2D array and generates an anisotropic electric field pattern to size fractionate EVs into discrete streams and steer the subpopulations into designated outlets for collection within a minute. Along with fractionating EV subpopulations, contaminants such as free proteins and short nucleic acids can be simultaneously directed to waste outlets, thus accomplishing both size fractionation and purification of EVs with high performance. Our platform offers a simple, rapid, and versatile solution for EV subpopulation isolation, which can potentially facilitate the discovery of biomarkers for specific EV subtypes and the development of EV-based therapeutics.


Assuntos
Vesículas Extracelulares , Microfluídica , Vesículas Extracelulares/química , Proteínas/análise , Eletroforese , Biomarcadores/análise
7.
ACS Nano ; 18(3): 2500-2519, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207106

RESUMO

Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/patologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Vesículas Extracelulares/química , Neoplasias Encefálicas/patologia
8.
Biol Sex Differ ; 15(1): 10, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273378

RESUMO

BACKGROUND: Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS: We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS: Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS: Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Assuntos
Alcoolismo , Vesículas Extracelulares , Masculino , Feminino , Humanos , Lipidômica , Lipídeos , Alcoolismo/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores , Consumo de Bebidas Alcoólicas
9.
Artigo em Inglês | MEDLINE | ID: mdl-38176095

RESUMO

Isolation of Extracellular Vesicles (EVs) has been done extensively in the past using ultracentrifugation, a recent shift has been observed towards precipitation, and exosome isolation kits. These methods often co-elute contaminants of similar size and density which makes their detection and downstream applications quite challenging. As well as the EV yield is also compromised in some methodologies due to aggregate formation. In recent reports, size-exclusion chromatography (SEC) is replacing density gradient-based ultracentrifugation as the gold standard of exosome isolation. It outperforms in yield, purity and does not account for any physical damage to the EVs. We have standardized the methodology for an efficient pure yield of homogenous exosomes of size even smaller than 75 nm in Caenorhabditis elegans homogenate. The paper entails the application and optimization of EV isolation by SEC based on previous studies by optimizing bed size and type of sepharose column employed. We propose that this method is economically feasible in comparison with currently available approaches. A comparative study was conducted to investigate the performance of CL-6B in relation to CL-2B and further, this was combined with ultracentrifugation for higher efficacy. The methodology could be introduced in a clinical setting due to its therapeutic potential and scope. The eluted EVs were studied by flow cytometry, nanotracking and characterized for size and morphology.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Caenorhabditis elegans , Vesículas Extracelulares/química , Ultracentrifugação/métodos , Cromatografia em Gel
10.
Adv Protein Chem Struct Biol ; 138: 101-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220422

RESUMO

Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Medicina de Precisão , Proteoma/metabolismo , Proteômica/métodos
11.
ACS Appl Bio Mater ; 7(2): 827-838, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227342

RESUMO

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.


Assuntos
Química Click , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Endossomos
12.
Anal Chem ; 96(5): 2244-2252, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38253329

RESUMO

Tumor-derived extracellular vesicle (T-EV) microRNAs have been investigated as promising biomarkers in clinical diagnosis as well as disease progression monitoring. However, the expression profiles of microRNA in different tissues vary widely, the precise monitoring of microRNA levels in EVs originating from diseased tissues is susceptible to background interference, thus remains a challenge. Conventional assays require extensive processing, such as EV isolation and even sample lysis, which is both slow and laborious, and the cumbersome pretreatment could spoil the downstream analysis. To address this issue, we developed a generalizable strategy for T-EVs-selective activation and therefore specific amplified microRNA imaging. The conditional signal amplification is established by integrating a traditional DNA walker system with endogenously activated motif to achieve sensitized microRNA imaging in T-EVs. The preorganized endogenous activation with additional sensing criteria narrowed the scope against the complex specimens, and the amplified sensing with reduced off-target signals was supposed to be sensitive to monitor the tiny changes of microRNA expression during the disease course, which holds great potential for accurate diagnosis and prognosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , MicroRNAs/análise , DNA/metabolismo , Vesículas Extracelulares/química , Prognóstico , Biomarcadores Tumorais/metabolismo
13.
Biomater Sci ; 12(5): 1131-1150, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38284828

RESUMO

Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Vesículas Extracelulares/química , Neoplasias/tratamento farmacológico , Membrana Celular
14.
Adv Biol (Weinh) ; 8(1): e2300233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670402

RESUMO

Extracellular vesicles (EVs) are highly sought after as a source of biomarkers for disease detection and monitoring. Tumor EV isolation, processing, and evaluation from biofluids is convoluted by EV heterogeneity and biological contaminants and is limited by technical processing efficacy. This study rigorously compares common bulk EV isolation workflows (size exclusion chromatography, SEC; membrane affinity, MA) alongside downstream RNA extraction protocols to investigate molecular analyte recovery. EV integrity and recovery is evaluated using a variety of technologies to quantify total intact EVs, total and surface proteins, and RNA purity and recovery. A comprehensive evaluation of each analyte is performed, with a specific emphasis on maintaining user (n = 2), biological (n = 3), and technical replicates (n≥3) under in vitro conditions. Subsequent study of tumor EV spike-in into healthy donor plasma samples is performed to further validate biofluid-derived EV purity and isolation for clinical application. Results show that EV surface integrity is considerably preserved in eluates from SEC-derived EVs, but RNA recovery and purity, as well as bulk protein isolation, is significantly improved in MA-isolated EVs. This study concludes that EV isolation and RNA extraction pipelines govern recovered analyte integrity, necessitating careful selection of processing modality to enhance recovery of the analyte of interest.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , RNA/análise , RNA/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo
15.
Electrophoresis ; 45(1-2): 101-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37289082

RESUMO

Milk is a rich source of biologically important proteins and peptides. In addition, milk contains a variety of extracellular vesicles (EVs), including exosomes, that carry their own proteome cargo. EVs are essential for cell-cell communication and modulation of biological processes. They act as nature carriers of bioactive proteins/peptides in targeted delivery during various physiological and pathological conditions. Identification of the proteins and protein-derived peptides in milk and EVs and recognition of their biological activities and functions had a tremendous impact on food industry, medicine research, and clinical applications. Advanced separation methods, mass spectrometry (MS)-based proteomic approaches and innovative biostatistical procedures allowed for characterization of milk protein isoforms, genetic/splice variants, posttranslational modifications and their key roles, and contributed to novel discoveries. This review article discusses recently published developments in separation and identification of bioactive proteins/peptides from milk and milk EVs, including MS-based proteomic approaches.


Assuntos
Vesículas Extracelulares , Proteínas do Leite , Animais , Proteínas do Leite/análise , Proteômica/métodos , Leite/química , Vesículas Extracelulares/química , Peptídeos/análise
16.
ACS Nano ; 17(23): 23584-23594, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033295

RESUMO

Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state, which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for statistical analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate and then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags colocalized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nanoenvironment where targeted moieties colocalized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Espectrometria de Massa de Íon Secundário , Linhagem Celular , Vesículas Extracelulares/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo
17.
ACS Appl Mater Interfaces ; 15(48): 55358-55368, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38008903

RESUMO

Tumor-derived extracellular vesicles (T-EVs) hold great promise for understanding cancer biology and improving cancer diagnostics and therapeutics. Herein, we developed multivalent DNA flowers (DFs) containing repeated and equidistant EpCAM aptamers for the efficient isolation of T-EVs. The multivalent aptamer chains in DFs had good flexibility to adapt to the surface morphology of T-EVs and achieved multivalent ligand-receptor interactions, thus showing enhanced isolation ability compared to monovalent aptamers. Compared with other materials for isolation of EVs, DFs were generated by rolling circle amplification (RCA) and self-assembled into microspheres in a one-pot reaction, and the recognition molecules (aptamers) were directly replicated and assembled during the RCA reaction instead of chemical modification and immobilization on the surface of solid materials. Moreover, as optically transparent biomaterials, the content of EpCAM+ EVs could be directly reflected via membrane-based hydrophobic assembly of signaling modules in DFs@EpCAM+ EVs complex, and we found that the amount of EpCAM+ EVs showed greater accuracy in cancer diagnosis than total EVs (88.3 vs 69.7%) and was also higher than the clinically commonly used marker carcinoembryonic antigen (CEA) (88.3 vs 76.7%). In addition, T-EVs could be released by lysis of DFs with the nuclease, gently and easily, keeping high intact and activity of EVs for downstream biological function studies. These results demonstrated that DFs are efficient and nondestructive tools for isolation, detection, and release of T-EVs.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Molécula de Adesão da Célula Epitelial/análise , DNA/química , Oligonucleotídeos/análise , Neoplasias/diagnóstico , Vesículas Extracelulares/química
18.
Anal Chem ; 95(44): 16194-16200, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889159

RESUMO

Quantitative analysis of surface proteins on extracellular vesicles (EVs) has been considered to be a crucial approach for reflecting the status of diseases. Due to the diverse composition of surface proteins on EVs and the interference from nonvesicular proteins, accurately detecting the expression of surface proteins on EVs remains a challenging task. While membrane affinity molecules have been widely employed as EVs capture probes to address this issue, their inherent biochemical properties have not been effectively harnessed. In this paper, we found that the electrochemical redox activity of the DSPE-PEG molecule was diminished upon its insertion into the membrane of EVs. This observation establishes the DSPE-PEG molecule modified on the Au electrode surface as a capture and a redox probe for the electrochemical detection of EVs. By utilizing methylene blue-labeled aptamers, the targeted surface proteins of EVs can be detected by recording the ratio of the oxidation peak current of methylene blue and DSPE-PEG. Without complicated signal amplification, the detection limit for EVs is calculated to be 8.11 × 102 particles/mL. Using this platform, we directly analyzed the expression of CD63 and HER2 proteins on the surface of EVs in human clinical plasma samples, demonstrating its significant potential in distinguishing breast cancer patients from healthy individuals.


Assuntos
Vesículas Extracelulares , Proteínas de Membrana , Humanos , Proteínas de Membrana/análise , Azul de Metileno/química , Oligonucleotídeos/análise , Vesículas Extracelulares/química , Oxirredução
19.
J Extracell Vesicles ; 12(10): e12349, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855042

RESUMO

The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.


Assuntos
Vesículas Extracelulares , Microscopia Crioeletrônica , Vesículas Extracelulares/química , Microscopia de Força Atômica/métodos , Lipopolissacarídeos , Lipoproteínas/análise
20.
J Am Soc Mass Spectrom ; 34(11): 2585-2593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870912

RESUMO

Extracellular vesicles (EVs) have emerged as a promising source of disease biomarkers for noninvasive early stage diagnoses, but a bottleneck in EV sample processing restricts their immense potential in clinical applications. Existing methods are limited by a low EV yield and integrity, slow processing speeds, low sample capacity, and poor recovery efficiency. We aimed to address these issues with a high-throughput automated workflow for EV isolation, EV lysis, protein extraction, and protein denaturation. The automation can process clinical urine samples in parallel, resulting in protein-covered beads ready for various analytical methods, including immunoassays, protein quantitation assays, and mass spectrometry. Compared to the standard manual lysis method for contamination levels, efficiency, and consistency of EV isolation, the automated protocol shows reproducible and robust proteomic quantitation with less than a 10% median coefficient of variation. When we applied the method to clinical samples, we identified a total 3,793 unique proteins and 40,380 unique peptides, with 992 significantly upregulated proteins in kidney cancer patients versus healthy controls. These upregulated proteins were found to be involved in several important kidney cancer metabolic pathways also identified with a manual control. This hands-free workflow represents a practical EV extraction and profiling approach that can benefit both clinical and research applications, streamlining biomarker discovery, tumor monitoring, and early cancer diagnoses.


Assuntos
Vesículas Extracelulares , Neoplasias Renais , Humanos , Fluxo de Trabalho , Proteômica/métodos , Proteínas/análise , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...